Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells

نویسندگان

  • Sandra Atienzar‐Aroca
  • Miguel Flores‐Bellver
  • Gemma Serrano‐Heras
  • Natalia Martinez‐Gil
  • Jorge M. Barcia
  • Silvia Aparicio
  • Daniel Perez‐Cremades
  • Jose M. Garcia‐Verdugo
  • Manuel Diaz‐Llopis
  • Francisco J. Romero
  • Javier Sancho‐Pelluz
چکیده

The retinal pigment epithelium (RPE), a monolayer located between the photoreceptors and the choroid, is constantly damaged by oxidative stress, particularly because of reactive oxygen species (ROS). As the RPE, because of its physiological functions, is essential for the survival of the retina, any sustained damage may consequently lead to loss of vision. Exosomes are small membranous vesicles released into the extracellular medium by numerous cell types, including RPE cells. Their cargo includes genetic material and proteins, making these vesicles essential for cell-to-cell communication. Exosomes may fuse with neighbouring cells influencing their fate. It has been observed that RPE cells release higher amounts of exosomes when they are under oxidative stress. Exosomes derived from cultured RPE cells were isolated by ultracentrifugation and quantified by flow cytometry. VEGF receptors (VEGFR) were analysed by both flow cytometry and Western blot. RT-PCR and qPCR were conducted to assess mRNA content of VEGFRs in exosomes. Neovascularization assays were performed after applying RPE exosomes into endothelial cell cultures. Our results showed that stressed RPE cells released a higher amount of exosomes than controls, with a higher expression of VEGFR in the membrane, and enclosed an extra cargo of VEGFR mRNA. Angiogenesis assays confirmed that endothelial cells increased their tube formation capacity when exposed to stressed RPE exosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space

Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...

متن کامل

Kinsenoside Ameliorates Oxidative Stress-Induced RPE Cell Apoptosis and Inhibits Angiogenesis via Erk/p38/NF-κB/VEGF Signaling

The pathological superoxidative condition that retinal pigment epithelium (RPE) cells experience contributed to the advancement of age-related macular degeneration (AMD), which was accompanied by significant neovascularization. Therefore, the discovery of novel pharmacological candidates to ameliorate oxidative damage (H2O2) against RPE cells and inhibit the following angiogenesis simultaneousl...

متن کامل

Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone)

Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGC...

متن کامل

Altered cytokine profiles of human retinal pigment epithelium: Oxidant injury and replicative senescence

PURPOSE Age-related macular degeneration (AMD) is a local, chronic inflammatory disease of the eye that is influenced by oxidative stress and dysregulation of the retinal pigment epithelium (RPE) associated with aging. The purpose of this study is to characterize the effects of oxidative stress and replicative senescence on the secreted cytokine profiles of RPE in vitro. METHODS We used multi...

متن کامل

Vascular endothelial growth factor-C secretion is increased by advanced glycation end-products: possible implication in ocular neovascularization

PURPOSE Neovascularization is a common complication of many degenerative and vascular diseases of the retina. Advanced glycation end-products (AGEs) have a pathologic role in the development of retinal neovascularization, mainly for their ability in upregulating vascular endothelial growth factor-A (VEGF-A) secretion. The aim of this study was to investigate whether AGEs are able to modulate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2016